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Abstract: In this paper, by the transition probability flow graphs theory, we obtain the transition probability flow
graphs of the random variables distributed as Gk(p) and NBk(r, p), the generalizations of usual geometric distri-
bution. We derive their probability generating functions, means, variances and their exact probability distributions,
in addition, we reveal the correlation between them. For success runs in n Bernoulli trials, we find the new concise
formulae for the probability distributions of Ln and N (k)

n . Finally, proceed from the parameter n = 2, 3, 4, we
derive the generalized geometric distribution denoted by G(p1, · · · , pn) and discuss its properties base on multi-
variate transition probability flow graphs methods.
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1 Introduction

Philippou [16] defined the geometric distribution of
order k and the negative binomial distribution of order
k, Philippou and Makri [17] defined the binomial dis-
tribution of order k. Muselli [15] derived some prob-
ability distributions formulae in Bernoulli trials. The
present paper is partly a continuation of their works.
All the distributions in section 2 and 3 can be defined
by success run, one of the important tools in the study
of Bernoulli trials. There are several definitions about
run (see, Han [11] and Schwager [18]), for example,
we can define a success run to be a specified sequence
of k consecutive success that may occur at some point
in the series of Bernoulli trials, where k is the length
of the run. In section 4, inspired by [3], [9] and [19],
we define a new generalization geometric distribution
in independent trials, and discuss its some probability
properties. In the present paper, we try to show the
transition probability flow graphs (TPFG) methods to
study the distributions.

TPFG theory is a forceful tool for discussing
some complicated discrete random variables. By de-
composing the Markov chain formed by the variation
of a nonnegative integer-valued random variable, as-
certaining the states and routes, and setting probabil-
ity functions to the routes, we get a flow graph of
the process being similar to the transition probability
graph of the chain. Based on the series-parallel opera-

tion rules, we can get the probability generating func-
tion of the random variable from the flow graph. The
TPFG’s prototype is the signal flow graphs theory ap-
plied to systems engineering widely, which was given
by Mason [14]. Koyama [12] firstly introduced it into
the study of sampling system. With the development
of sampling inspection, Fan (1998) did lots of work
for TPFG such that it gradually became a complete
theory. We give a brief description for it as follows,
for detail, the readers are referred to Fan [4, 5, 6].

Let τ be a nonnegative integer-valued random
variable with probability space (Ω,F , P ), set Bn =
{τ = n}, for B ∈ F , the transition prob-
ability function of τ is defined by Gτ (B;x) =
∞∑
n=0

P (BBn)x
n, |x| ≤ 1. When B = Ω we get

the probability generating function of τ as Gτ (x) =
∞∑
n=0

P (τ = n)xn.

Consider a Markov chain that takes on count-
able number of possible values. The transition pro-
cess from state A into B denoted by R : A → B
is called a route, and its transition time named step
is a random variable. By the Markov property that
the steps of A → B and B → C are independen-
t. The transition probability function of the route R

is defined by GR(x) =
∞∑
n=0

PR(n)x
n, where PR(n)

is the n−step transition probability of R. The route
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from A into C by way of B denoted by R1 · R2 is
called a series route if the routes R1 : A → B and
R2 : B → C are independent. The route denoted by
R1 +R2 is called a parallel route of R1 : A→ B and
R2 : A → B if they are mutually exclusive. Then we
have

Lemma 1 Let GR1(x) and GR2(x) be respective-
ly the transition probability functions of R1 and
R2, then GR1·R2(x) = GR1(x) · GR2(x) and
GR1+R2(x) = GR1(x) +GR2(x).

The routeA→ B(A ̸= B) denoted by L is called
a straight route if no state is repeated in it. The route
denoted by C is called a loop route on stateA ifA can
be repeated infinitely, and all the repeated routes are
independent identically distributed. For the straight
route and loop route, we have

Lemma 2 The series-parallel connection rules of s-
traight routes and loop routes are shown in Figure 1.

Figure 1: Connection rules for the straight and loop routes

Let τ1, τ2, · · · , τn be n random variables, their
joint probability space is (Ω,F , P ), for A ∈ F , the
joint transition probability function of (τ1, τ2, · · · , τn)
is given by

G(x1, x2, · · · , xn;A)
=

∑
i1,···,in

P (τ1 = i1, · · · , τn = in;A)x
i1
1 · · ·xinn ,

where |xk| ≤ 1, k = 1, · · · , n. When A =
Ω, G(x1, · · · , xn; Ω) is called the joint probabili-
ty generating function of (τ1, · · · , τn), denoted by
G(x1, · · · , xn).

Lemma 3 Let G(x1, x2, · · · , xn) be the joint
probability generating function of (τ1, τ2, · · · , τn),
then G(1, · · · , 1, xk, 1, · · · , 1) is the probabili-
ty generating function of τk, k = 1, 2, · · · , n,
and G(x, x, · · · , x) is the probability generating
function of τ = τ1 + · · ·+ τn, which does not depend
on the independence of τ1, τ2, · · · , τn.

Lemma 4 Let Gη(x) be the probability generating
function of η, then

Eη = G′
η(1),

V arη = G′′
η(1) +G′

η(1)−G′2
η (1).

2 The geometric distribution of or-
der k

In this section, we shall generalize the usual geometric
distribution into the geometric distribution of order k
by TPFG methods, furthermore, we will discuss its
properties.

Let ξ(k) be the number of trials until the occur-
rence of the success run with length k in Bernoulli
trials with success probability p. We denote the prob-
ability distribution of ξ(k) by Gk(p) and call it the ge-
ometric distribution of order k with parameter p. Then
we have

Theorem 5 The mean and variance of ξ(k), denoted
by Eξ(k) and V arξ(k), are given by

Eξ(k) =
1

p
+

1

p2
+ · · ·+ 1

pk
,

V arξ(k) =

q

[
k−1∑
l=0

(
l+2
2

)
pl +

2k−2∑
l=k

(
2k−l
2

)
pl
]

p2k
.

Proof: Let τn be a state that the trial process is in
at the end of the foregoing n trials, where the num-
ber of trials n is also named transition time. then
{τn, n = 1, 2, · · ·} is a Markov chain with state s-
pace S = {0, 1, 2, · · · , k}, where 0 is the beginning
state B, and k is the ending state E. The even-
t {τn = s, s ∈ S} denotes the occurrence of s con-
secutive successes at the end of the foregoing n trials.
Hence, {τn = k} = {ξ(k) = n}. From the beginning
to the ending, we can obtain the transition probability
flow graphs of {τn, n = 1, 2, · · ·}, i.e., the TPFG of
Gk(p) as shown in Figure 2.

Figure 2: The TPFG of Gk(p)

There are k parallel loop routes at state B
with respectively the transition probability functions
qx, qx(px), qx(px)2, · · · , qx(px)k−1, and k series s-
traight routes from B to E with the same transition
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probability function px. Then we get the transition
probability functions of the loop route and the straight
route from B to E denoted respectively by C(x) and
L(x) as follows

C(x) =
k−1∑
l=0

(qx)(px)l =
qx[1− (px)k]

1− px
,

L(x) = (px) · (px) · · · (px) = (px)k.

By Figure 2 and Lemma 2, we get the probability
generating function of ξ(k) (the transition time of the
route B → E)

Gξ(k)(x) =
L(x)

1− C(x)
=

pkxk(1− px)

1− x+ qpkxk+1
. (1)

To derive the mean and variance of ξ(k), we differen-
tiate Gξ(k)(x) and evaluate at x = 1, that is

G′
ξ(k)

(1) =
1

p
+

1

p2
+ · · ·+ 1

pk
,

G′′
ξ(k)

(1) =
q[1− pk − (k + 1)qpk + qp2k]

q2p2k
.

The results follow from Lemma 4. This com-
pletes the proof. ⊓⊔

Remark 6 1) When p = 1/2, Eξ(k) = 2(2k − 1) has
been obtained by Barry [2].

2) The equation (1) has also been obtained by
Feller [7], Philippou [16] and Aki [1].

After that, we expand the probability generating
function Gξ(k)(x) into power series for deriving the
exact probability distribution of ξ(k).

Gξ(k)(x) = pkxk(1− px)
∞∑
n=0

(x− qpkxk+1)n

= pkxk(1− px)
∞∑
n=0

n∑
m=0

(
n

m

)
(−qpk)mxmk+n,

where

∞∑
n=0

n∑
m=0

(
n

m

)
(−qpk)mxmk+n =

k∑
j=0

(
j

0

)
xj

+
k+1∑
j=1

[(
j

1

)
(−qpk) +

(
k + j

0

)]
xk+j

+
k+2∑
j=2

[(
j

2

)
(−qpk)2 +

(
k + j

1

)
(−qpk)

+

(
2k + j

0

)]
x2k+j

+
k+3∑
j=3

[(
j

3

)
(−qpk)3 +

(
k + j

2

)
(−qpk)2

+

(
2k + j

1

)
(−qpk) +

(
3k + j

0

)]
x3k+j + · · ·

+
k+l∑
j=l

[
l∑

m=0

(
mk + j

l −m

)
(−qpk)l−m

]
xlk+j + · · ·

=
∞∑
n=0

a(k)n xn,

where a(k)n is given by

a(k)n =

[ n
k+1

]∑
j=0

(
n− jk

j

)
(−qpk)j . (2)

It follows that

Gξ(k)(x) = (pkxk − pk+1xk+1)
∞∑
n=0

a(k)n xn

= pkxk +
∞∑

n=k+1

(
pka

(k)
n−k − pk+1a

(k)
n−k−1

)
xn.

Thus, we obtain the following result:

Theorem 7 The probability distribution of the kth or-
der geometric variable ξ(k) is

P (ξ(k) = n) = pka
(k)
n−k − pk+1a

(k)
n−k−1, (3)

where a(k)n−k, a(k)n−k−1 can be derived from equation (2)

and a(k)n ≡ 0 if n < 0.

Corollary 8 For k = 1, ξ(1) is a random variable
distributed as usual geometric distribution.

Proof: By equations (2) and (3), we have

P
(
ξ(1) = n

)
= p

(
a
(1)
n−1 − pa

(1)
n−2

)
= p

[n−1
2

]∑
j=0

(
n− j − 1

j

)
(−qp)j

−p2
[n−2

2
]∑

j=0

(
n− j − 2

j

)
(−qp)j

= p
n−1∑
j=0

(
n− 1

j

)
(−p)j

= p (1− p)n−1 = qn−1p,

where we used equation
(
m−1
l−1

)
+
(
m−1
l

)
=
(m

l

)
.

Corollary 8 has been proven. ⊓⊔
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Remark 9 It follows from Corollary 8 that Gk(p) is
a generalized geometric distribution.

Let Ln be the length of the longest success run
in n Bernoulli trials with success probability p and
set Rn(k) = P (Ln < k). The event {ξ(k) = n} is
equivalent to that the last k trials are all successful in
n trials, the (n − k)th trial is fail and all the lengths
of the success runs are less than k in the foregoing
(n− k − 1) trials. Therefore

P (ξ(k) = n) = qpkRn−k−1(k). (4)

By considering equations (2), (3) and (4), we have

Rn(k) = q−1p−k · P (ξ(k) = n+ k + 1)

=
1

q

[n+1
k+1

]∑
j=0

(
n− jk + 1

j

)
(−qpk)j

−p
q

[ n
k+1

]∑
j=0

(
n− jk

j

)
(−qpk)j . (5)

Then we have

Corollary 10 The distribution of the longest success
run Ln in n Bernoulli trials is

P (Ln = k) = Rn(k + 1)−Rn(k),

where Rn(k + 1), Rn(k) can be derived from (5).

Remark 11 Corollary 10 is more concise than the
same work of Fu [8] and Muselli [15].

3 The negative binomial distribution
of order k

In this section, we shall derive the probability gener-
ating function of the negative binomial distribution of
order k, and then discuss its relationship with some
other distributions.

Let ξ(k,r) be a random variable denoting the num-
ber of trials until the rth occurrence of the success run
with length k in Bernoulli trials with success probabil-
ity p. We denote the probability distribution of ξ(k,r)
by NBk(r, p) and call it the negative binomial distri-
bution of order k with parameter vector (r, p).

Theorem 12 The mean and variance of ξ(k,r) are giv-
en by

Eξ(k,r) =
r

p
+

r

p2
+ · · ·+ r

pk
,

V arξ(k,r) =
rq
[∑k−1

l=0

(
l+2
2

)
pl +

∑2k−2
l=k

(
2k−l
2

)
pl
]

p2k
.

Proof: Similar to the proof of Theorem 5, let
{τn, n = 1, 2, · · ·} be a Markov chain with state space
S = {0, 1, 2, · · · , r}, where n is the number of trials.
The event {τn = s, s ∈ S} denotes the sth occurrence
of the success run with length k at the end of the fore-
going n trials. Hence, {τn = r} = {ξ(k,r) = n}.
Thus we have the transition probability flow graphs of
{τn, n = 1, 2, · · ·} as shown in Figure 3, where k = 2
for convenience.

Figure 3: The TPFG of NBk(r, p)

We may employ Figure 3 and Lemma 2 to get the
probability generating function of ξ(k,r)

Gξ(k,r)(x) =

(
pkxk − pk+1xk+1

1− x+ qpkxk+1

)r

. (6)

By Lemma 4, we can derive the mean and variance of
ξ(k,r). The proof is complete. ⊓⊔

Remark 13 Following the equations (1) and (6), if
Xi(i = 1, · · · , r) are independently distributed as
Gk(p), thenX1+· · ·+Xr is distributed asNBk(r, p).

Theorem 14 The probability distribution of ξ(k,r) is

P (ξ(k,r) = n) =
r∑

l=0

(
r

l

)
(−p)la(k,r)n−kr−lp

kr, (7)

where

a(k,r)n =

[ n
k+1

]∑
j=0

(
r + n− jk − 1

r − 1, j, n− jk − j

)
(−qpk)j (8)

and a(k,r)n ≡ 0 if n < 0.

Proof:

Gξ(k,r)(x) = pkrxkr(1− px)r
[
1− (x− qpkxk+1)

]−r
,

where

[
1− (x− qpkxk+1)

]−r
= 1 +

k∑
j=1

(
r+ j− 1

j

)
xj

+
k+1∑
j=1

[(
r + j − 1

j

)(
j

1

)
(−qpk)

+

(
r + k + j − 1

k + j

)(
k + j

0

)]
xk+j + · · ·
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+
k+l∑
j=l

[
l∑

m=0

(
r +mk + j − 1

mk + j

)(
mk + j

l −m

)

×(−qpk)l−m
]
xlk+j + · · · =

∞∑
n=0

a(k,r)n xn,

where a(k,r)n is given by (8). Therefore

Gξ(k,r)(x) = pkrxkr(1− px)r
∞∑
n=0

a(k,r)n xn

=
r−1∑
n=0

(
n∑

l=0

(
r

l

)
(−p)la(k,r)n−l

)
pkrxkr+n

+
∞∑
n=r

(
r∑

l=0

(
r

l

)
(−p)la(k,r)n−l

)
pkrxkr+n

=
kr+r−1∑
n=kr

(
n−kr∑
l=0

(
r

l

)
(−p)la(k,r)n−kr−l

)
pkrxn

+
∞∑

n=kr+r

(
r∑

l=0

(
r

l

)
(−p)la(k,r)n−kr−l

)
pkrxn.

From the above we can get the probability distribution
of ξ(k,r). ⊓⊔

Corollary 15 NB1(r, p) is a negative binomial dis-
tribution with parameter vector (r, p).

Proof: From equations (7) and (8), we have

P (ξ(1,r) = n) =
r∑

l=0

(
r

l

)
(−p)la(1,r)n−r−lp

r

=
r∑

l=0

(
r

l

)
(−p)l

[n−r−l
2

]∑
j=0

(
n− l − j − 1

r − 1

)
×
(
n− r − l − j

j

)
(−qp)jpr

=
r∑

l=0

(
r

l

) [n−r−l
2

]∑
j=0

j∑
s=0

(
n− l − j − 1

r − 1

)
×
(
n− r − l − j

j

)(
j

s

)
(−p)l+s+jpr

=
r∑

l=0

[n−r−l
2

]∑
j=0

j∑
s=0

(
r

l

)(
n− l − j − 1

r − 1

)
×
(
n− r − l − j

j

)(
j

s

)
(−p)l+s+jpr

=

(
n− 1

r − 1

) n−r∑
j=0

(−p)jpr

=

(
n− 1

r − 1

)
(1− p)n−rpr. (9)

The result is proven. ⊓⊔

Remark 16 The proof for Corollary 15 can verify the
correctness of equation (7).

Moreover, following from

P (η = n) =

(
n− 1

r − 1

)
(1− p)n−rpr,

the formula for the probability distribution of the neg-
ative binomial variable η, we have its probability gen-
erating function

Gη(x) =
∞∑
n=r

(
n− 1

r − 1

)
(1− p)n−rprxn

= (px)r
∞∑
n=r

(
n− 1

r − 1

)
(qx)n−r

= (px)r
∞∑
k=0

(
r − 1 + k

r − 1

)
(qx)k =

(
px

1− qx

)r

,

on the other hand,

Gξ(1,r)(x) =

(
px− p2x2

1− x+ qpx2

)r

=

(
px

1− qx

)r

,

which illustrates thatNB1(r, p) is a negative binomial
distribution.

Corollary 17 NBk(1, p) = Gk(p).

Corollary 18 NB1(1, p) is the usual geometric dis-
tribution.

Theorem 19 Let N (k)
n be the number of success run

with length k in n Bernoulli trials with success prob-
ability p. The probability distribution of N (k)

n denoted
by Bk(n, p) is called the binomial distribution of or-
der k with parameter vector (n, p). We have

P (N (k)
n = r) =

k−1∑
s=0

r+1∑
l=0

(
r+1
l

)
(−p)la(k,r+1)

n−kr−l−sp
kr+s,

where a(k,r+1)
n−kr−l−s can be derived from (8).

Proof: For ξ(k,r+1) is distributed asNBk(r+1, p), let
Ck = {ξ(k,r+1) = n+k−s|(k−s) successes} denote
the event that (r+1) success runs of length k occur in
(n+ k − s) trials and the posterior (k − s) successes
are deleted, where s = 0, 1, · · · , k − 1. We shall find
that ∪k−1

s=0Ck means all the possible ways the r success
runs occur in n Bernoulli trials, i.e., {N (k)

n = r} =

∪k−1
s=0Ck. Hence we have

P (N (k)
n = r) = P (∪k−1

s=0Ck)
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= P (
k−1∪
s=0

{ξ(k,r+1) = n+ k − s|(k − s) successes})

=
k−1∑
s=0

p−(k−s) · P (ξ(k,r+1) = n+ k − s). (10)

By Theorem 14, we can get the probability distri-
bution of N (k)

n . ⊓⊔

Remark 20 A equivalent formula of Theorem 19 has
also been obtained by Godbole [10].

Corollary 21 For k = 1, N (1)
n is distributed as the

usual binomial distribution.

Proof: By considering (9) and (10), we have

P
(
N (1)

n = r
)
= p−1 · P (ξ(1,r+1) = n+ 1)

= p−1
(
n+ 1− 1

r + 1− 1

)
(1− p)(n+1)−(r+1)pr+1

=

(
n

r

)
(1− p)n−rpr.

The proof of Corollary 21 is complete. ⊓⊔

4 Some properties of G(p1, · · · , pn)
In sections 2 and 3, base on Bernoulli trials, we gen-
eralize the usual geometric distribution into Gk(p)
and NBk(r, p), moreover, we show the correlation
between them. In this section, we shall discuss a
new generalized geometric distribution denoted by
G(p1, · · · , pn) in independent trials. And the corre-
sponding methods named multivariate transition prob-
ability flow graphs.

Suppose that each independent trial result is
one of the events A1, A2,· · · , An, which are mu-
tually exclusive with respective success probability
p1 , p2, · · · , pn, such that

∑n
1 pk = 1. Obviously, the

independent trial is a generalization of Bernoulli tri-
al. Let ξ be the number of trials required until ev-
ery Ak, k = 1, 2, · · · , n has exactly occurred, then
ξ = ξ1+ξ2+· · ·+ξn is called the generalized geomet-
ric variable with parameter vector (p1, p2, · · · , pn),
denoted by G(p1, p2, · · · , pn), where ξk is the occur-
rence number of Ak, k = 1, 2, · · · , n.

Theorem 22 Let ξ be the generalized geometric ran-
dom variable with parameter vector (p1, p2), then

Eξ =
1

p1
+

1

p2
− 1, (11)

V arξ =
p21
p22

+
p22
p21

+
p1
p2

+
p2
p1

− 2, (12)

P (ξ = n) = p1p2(p
n−2
1 +pn−2

2 ), n = 2, 3, · · · . (13)

Proof: Starting from the state B, the process comes
to the next state as soon as a new event occurs in a tri-
al, otherwise, it keeps stopping in the original state.
Let E12 = E21 = E denote the ending state, the
route B → E constitutes a Markov chain as shown
in Figure 4, where l1 = c1 = p1x1, l2 = c2 = p2x2
denote the transition probability functions of routes in
B → E respectively.

Figure 4: The TPFG of G(p1, p2)

Hence, by Lemma 1, we get the joint probability
generating function of (ξ1, ξ2), that is the occurrence
number of A1 and A2, as follows

Gξ1,ξ2(x1, x2) =
p1p2x1x2
1− p1x1

+
p1p2x1x2
1− p2x2

. (14)

Let x1 = x2 = x in (14), by Lemma 3, the joint
generating function of ξ = ξ1 + ξ2 is given by

Gξ(x) =
p1p2x

2

1− p1x
+
p1p2x

2

1− p2x
. (15)

Using Lemma 4, we can derive the mean and variance
of ξ from formula (15).

Furthermore, expanding Gξ(x) into power series,
we obtain

Gξ(x) =
∞∑
n=2

p1p2(p
n−2
1 + pn−2

2 )xn. (16)

Thus, from (16), we have the probability distribution
of ξ as follows

P (ξ = n) = p1p2(p
n−2
1 + pn−2

2 ), n = 2, 3, · · · .

Theorem 22 has been proved. ⊓⊔

Theorem 23 Let ξ = ξ1 + ξ2 + ξ3 be the general-
ized geometric random variable with parameter vec-
tor (p1, p2, p3), then

E(ξ) =
∑

1≤i≤3

1

pi
−

∑
1≤i<j≤3

1

pi + pj
+ 1, (17)

V ar(ξ) =
∑

1≤i≤3

1− pi
p2i

− 3
∑

1≤i<j≤3

1− (pi + pj)

(pi + pj)2

−2
1− (p1p2 + p1p3 + p2p3)

(p1 + p2)(p1 + p3)(p2 + p3)
, (18)

E(ξk) = pk · E(ξ), k = 1, 2, 3, (19)

P (ξ = n+ 3) = p1p2p3

n∑
r=0

∑
1≤i<j≤3

(pri + prj)(pi + pj)
n−r, n = 0, 1, 2, · · · . (20)
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Proof: In the TPFG of the trial process (see Figure 5),
B is the beginning state, E123 = · · · = E321 = E is
the ending state. There are 3! = 6 parallel routes, with
the transition probability functions: lk = ck = pkxk,
cij = pixi + pjxj ,k, i, j = 1, 2, 3, i ≠ j.

Figure 5: The TPFG of G(p1, p2, p3)

Let g123 be the transition probability function of
the route B → E123, then it follows from Lemma 2
that

g123 =
p1p2p3x1x2x3

(1− p1x1)(1− p1x1 − p2x2)
.

Similarly for B → E132, · · · , B → E321, we have
their transition probability functions

g132 =
p1p2p3x1x2x3

(1− p1x1)(1− p1x1 − p3x3)
,

g213 =
p1p2p3x1x2x3

(1− p2x2)(1− p2x2 − p1x1)
,

g231 =
p1p2p3x1x2x3

(1− p2x2)(1− p2x2 − p3x3)
,

g312 =
p1p2p3x1x2x3

(1− p3x3)(1− p3x3 − p1x1)
,

g321 =
p1p2p3x1x2x3

(1− p3x3)(1− p3x3 − p2x2)
.

By Lemma 1, we obtain the joint probability gen-
erating function of (ξ1, ξ2, ξ3) as

Gξ1,ξ2,ξ3(x1, x2, x3) =
g123 + g132 + g213 + g231 + g312 + g321.(21)

Let x1 = x2 = x3 = x in (21), by Lemma 3,
we have the probability generating function of ξ =
ξ1 + ξ2 + ξ3 as follows

Gξ(x) = Gξ1,ξ2,ξ3(x, x, x),

and by Lemma 4, we can derive the mean and variance
of ξ as equations (17) and (18).

Let x2 = x3 = 1 in (21), then we get the proba-
bility generating function of ξ1

Gξ1(x1) = Gξ1,ξ2,ξ3(x1, 1, 1),

similarly,

Gξ2(x2) = Gξ1,ξ2,ξ3(1, x2, 1),

Gξ3(x3) = Gξ1,ξ2,ξ3(1, 1, x3).

Hence, by Eξk = G′
ξk
(1), k = 1, 2, 3, we can

derive the mean of ξk.
Similar to formula (16), we have

Gξ(x) = p1p2p3

∞∑
n=0

(
n∑

r=0

pr1(p1 + p2)
n−r

)
xn+3

+p1p2p3

∞∑
n=0

(
n∑

r=0

pr1(p1 + p3)
n−r

)
xn+3

+p1p2p3

∞∑
n=0

(
n∑

r=0

pr2(p2 + p1)
n−r

)
xn+3

+p1p2p3

∞∑
n=0

(
n∑

r=0

pr2(p2 + p3)
n−r

)
xn+3

+p1p2p3

∞∑
n=0

(
n∑

r=0

pr3(p3 + p1)
n−r

)
xn+3

+p1p2p3

∞∑
n=0

(
n∑

r=0

pr3(p3 + p2)
n−r

)
xn+3. (22)

From formula (22), we get the probability distri-
bution of ξ as follows

P (ξ = n+ 3) = p1p2p3

n∑
r=0

∑
1≤i<j≤3

(pri + prj)(pi + pj)
n−r, n = 0, 1, 2, · · · .

The proof is complete. ⊓⊔

Theorem 24 If ξ = ξ1 + ξ2 + ξ3 + ξ4 is distributed
as G(p1, p2, p3, p4), then we have

Eξ =
4∑

r=1

(−1)r−1
∑

1≤l1<l2<···<lr≤4

1

pl1 + pl2 + · · ·+ plr
, (23)

G′′
ξ (1) = 2

4∑
r=1

(−1)r−1
∑

1≤l1<l2<···<lr≤4

1− (pl1 + pl2 + · · ·+ plr)

(pl1 + pl2 + · · ·+ plr)
2
, (24)

Eξk = pk · Eξ, k = 1, 2, 3, 4. (25)
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Proof: Following the operation of G(p1, p2, p3, p4),
we get the TPFG as shown in Figure 6.

Figure 6: The TPFG of G(p1, p2, p3, p4)

Where B is the beginning state, E1234 = · · · =
E4321 = E is the ending state. There are 4! = 24 par-
allel routes, with the transition probability functions:

lk = ck = pkxk, k = 1, 2, 3, 4,

cij = pixi + pjxj , i, j = 1, 2, 3, 4, i ≠ j,

cijk = pixi+pjxj+pkxk, i, j, k = 1, 2, 3, 4, i ̸= j ̸= k.

We put the 24 routes into 4 sets by l1, l2, l3, l4,
for instance, {B → E1234, B → E1243, B →
E1324, B → E1342, B → E1423, B → E1432} is one
of the 4 sets. We get its joint transition probability
function as follows

g1(x1, x2, x3, x4) =
p1p2p3p4x1x2x3x4

(1−p1x1)(1−p1x1−p2x2)(1−p1x1−p2x2−p3x3)

+ p1p2p4p3x1x2x4x3

(1−p1x1)(1−p1x1−p2x2)(1−p1x1−p2x2−p4x4)

+ p1p3p2p4x1x3x2x4

(1−p1x1)(1−p1x1−p3x3)(1−p1x1−p3x3−p2x2)

+ p1p3p4p2x1x3x4x2

(1−p1x1)(1−p1x1−p3x3)(1−p1x1−p3x3−p4x4)

+ p1p4p2p3x1x4x2x3

(1−p1x1)(1−p1x1−p4x4)(1−p1x1−p4x4−p2x2)

+ p1p4p3p2x1x4x3x2

(1−p1x1)(1−p1x1−p4x4)(1−p1x1−p4x4−p3x3)
.

In addition, we can get

g2(x1, x2, x3, x4),

g3(x1, x2, x3, x4),

g4(x1, x2, x3, x4),

that is, the joint transition probability functions of the
other 3 sets, where we omit their expressions similarly
to g1(x1, x2, x3, x4).

Hence, by Lemma 1, we have the joint probability
generating function of (ξ1, ξ2, ξ3, ξ4)

Gξ1,ξ2,ξ3,ξ4(x1, x2, x3, x4) =
4∑

k=1

gk(x1, x2, x3, x4).

By Lemma 4, we get the probability generating func-
tion of ξ in the following

Gξ(x) =
4∑

k=1

gk(x, x, x, x).

By computing the first and second derivative ofGξ(x)
at x = 1, we get equations (23) and (24).

Note that

Gξ1(x1) = Gξ1,ξ2,ξ3,ξ4(x1, 1, 1, 1), · · · ,

Gξ4(x4) = Gξ1,ξ2,ξ3,ξ4(1, 1, 1, x4)

and
Eξk = G′

ξk
(1), k = 1, 2, 3, 4,

we shall get (25). This completes the proof. ⊓⊔
When the parameter n = 5, there are 5! routes

in the TPFG of G(p1, p2, p3, p4, p5) from beginning
to ending. It’s difficult to get the TPFG and the cor-
responding probability generating function. We find
that the computational complexity increases rapidly in
parameter n. In fact, even if n = 4 as stated above,
the description of TPFG and the presentation for the
probability generating function are very complicated.
Nevertheless, the work for n = 4 is necessary, since
it is hard to summarize G(p1, p2, · · · , pn) only from
n = 2, 3. By generalizing the results in Theorems 22,
23 and 24, we shall get

Theorem 25 If the random variable ξ =
∑n

j=1 ξj is
distributed as G(p1, · · · , pn), then

Eξ =
n∑

r=1

(−1)r−1
∑

1≤l1<l2<···<lr≤n

1

pl1 + pl2 + · · ·+ plr
, (26)

G′′
ξ (1) = 2

n∑
r=1

(−1)r−1
∑

1≤l1<l2<···<lr≤n

1− (pl1 + pl2 + · · ·+ plr)

(pl1 + pl2 + · · ·+ plr)
2
, (27)

Eξj = pj · Eξ, j = 1, 2, · · · , n. (28)
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Remark 26 1) There are (2n − 1) terms in the right-
hand side of formula (26), each term is a mean of
some random variable. All the terms can be divid-
ed into n classes: { 1

pl
; 1 ≤ l ≤ n}, { 1

pl1+pl2
; 1 ≤

l1 < l2 ≤ n}, { 1
pl1+pl2+pl3

; 1 ≤ l1 < l2 < l3 ≤
n}, · · · , { 1

p1+p2+···+pn
= 1}.

2) Following equations (26) and (27), we can get
the variance of ξ. Especially, if ξ is distributed as
G( 1n ,

1
n , · · · ,

1
n), then its variance is

n∑
r=1

(−1)r−1
(n
r

)
n(2n− r)

r2
−
[

n∑
r=1

(−1)r−1
(n
r

)
n

r

]2
.

3) By combining equation (26) with the result pre-
sented in Gao’s work [9], we obtain a combinatorial
identity

n∑
r=1

(−1)r−1
(n
r

)
r

=
n∑

r=1

1

r
.

5 Conclusions
In order to discuss the probability properties of some
success runs in Bernoulli trials, we introduce the tran-
sition probability flow graphs methods. In sections
2 and 3, following the TPFG methods we derive the
generating functions of the geometric distribution of
order k and the negative binomial distribution of order
k. Then we get the means, variances and probabili-
ty distributions, the exact probability distributions of
them, furthermore, we show the relation of Gk(p) and
NBk(p). In section 4, we define the generalized ge-
ometric distribution G(p1, · · · , pn), discuss its mean,
variance, probability distribution and some other char-
acteristics by multivariate transition probability flow
graphs theory. Moreover, we believe that TPFG meth-
ods should also be applied to other fields, for example,
see [13], [20] and [21].
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